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viral sequences and a few thousand iso-
late sequences. Before the advent of 
high-throughput sequencing, our under-
standing of phage genomics was lim-
ited to lineages that could be cultured in 
plaques.[4] Although metagenomics allevi-
ates this limitation,[5] the typically small 
size of phage genomes, the lack of a uni-
versal marker gene, and the high genetic 
diversity complicate the identification of 
phage genomic sequences.[6]

Common approaches of phage iden-
tification use Hidden Markov Models 
based gene annotation to search for 
coding regions that are homologous 
to known viral genes, including “hall-
mark genes” such as the terminase large 
and small subunits, major capsid, coat, 
tail, and portal proteins.[7–9] Approaches 
based on hallmark genes perform well 
for identifying genomes closely related 
to known phage sequences in terms of 
genetic content but may fail at identifying 
phage sequences with few known genetic 
homologues. A less common approach 
employs machine-learning techniques on 
frequencies of short oligonucleotides of 

length k (k-mers).[10] Frequencies of k-mers vary among spe-
cies, and can be used to predict phylogeny and taxonomy. For 
instance, k-mer frequencies of a phage’s genome are predictive 
of the phage’s host.[5,11,12] A k-mer frequency based approach is 
advantageous when no high-similarity alignments exist. Such 
an approach is capable of handling metagenome assembled 
contigs significantly shorter than the complete viral genome 
and reduces computational expense compared to alignment-
based methods. Other than identifying phage genomes, 
machine-learning techniques have been used for molecular 
applications such as identifying phage virion proteins[13,14] and 
phage proteins[15] that may be located inside host cells, possibly 
during the lysogenic phase. Finally, identification of potential 
host for phage contigs assembled from metagenomic data typi-
cally requires comparison to reference phage genomes with 
known host,[16] matching to CRISPR repeats found in bacterial 
genomes,[17] or comparing sequence content such as tetranu-
cleotide frequencies.[18,19]

Here we analyze mini-metagenomic assembled contigs from 
three hot spring locations in Yellowstone National Park (YNP) 
for phage representation. We create a custom algorithm, called 

A broad spectrum of metagenomic and single cell sequencing techniques 
have become popular for dissecting environmental microbial diversity, 
leading to the characterization of thousands of novel microbial lineages. 
In addition to recovering bacterial and archaeal genomes, metagenomic 
assembly can also produce genomes of viruses that infect microbial cells. 
Because of their diversity, lack of marker genes, and small genome size, 
identifying novel bacteriophage sequences from metagenomic data is often 
challenging, especially when the objective is to establish phage–host relation-
ships. The present work describes a computational approach that uses super-
vised learning to classify metagenomic contigs as phage or non-phage as well 
as assigning phage taxonomy based on tetranucleotide frequencies. Further-
more, the method assigns phage–host relationships using co-occurrence 
statistics derived from a recently developed mini-metagenomic experimental 
technique. This work evaluates method performance at identifying viral 
contigs and predicting taxonomic classification using publicly available refer-
ences. Then, using two mini-metagenomic datasets, over 100 novel phage 
contigs from hot spring samples of Yellowstone National Park are identified 
and assigned to putative microbial hosts. Results of this work demonstrate 
the value of combining viral sequence identification with mini-metagenomic 
experimental methods to understand the microbial ecosystem.
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Metagenomics

1. Introduction

Bacteriophages (phages) play important roles in microbial 
communities, often driving lateral gene transfer,[1] regulating 
the recycling of microbial biomass,[2] and are the most abun-
dant biological entities on the planet at an estimated 1031 
viral particles.[3] Despite this abundance, our understanding 
of phage diversity is limited to 105 metagenomic assembled 
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PhaMers (Phage k-Mers), that uses tetranucleotide frequency 
and a combination of two supervised learning algorithms to 
identify as well as to classify viral sequences from metagen-
omic sequencing data. We first characterize performance of 
PhaMers using references viral and microbial sequences from 
NCBI. We then apply PhaMers to hotspring metagenomic con-
tigs and compare the results to those obtained from VirSorter, 
an automated phage identification pipeline based on alignment 
to hallmark genes,[7] and DeepVirFinder, another k-mer based 
viral identification tools based on convolutional neural net-
work (CNN), a different machine-learning framework. In total, 
we identify 1165 putative phage sequences longer than 5 kbp 
and 313 putative sequences longer than 10 kbp supported by 
at least one viral identification tool. Less than half of the phage 
sequences PhaMers identifies is also identified as phage by 
DeepVirFinder.[20] We use Joint Genome Institute’s Integrated 
Microbial Genomes & Microbiomes (IMG/ER) pipeline[21] to 
generate functional annotations for all phage sequences and 
demonstrate that more putative phage sequences identified 
by PhaMers contain viral genes compared to DeepVirFinder. 
Finally, using mini-metagenomic co-occurrence patterns, we 
identify and propose putative hosts for more than 100 novel 
phage sequences.

2. Results and Discussions

2.1. Tetranucleotide Frequency Differentiates Phage Taxonomy

Tetranucleotide frequency has been used to group prokary-
otic genomes, to assign taxonomy,[19] and to distinguish 
finer scale compositional biases such as those around the 
replication origins of bacteria.[22] Due to viral host speci-
ficity, we argue that tetranucleotide frequencies can also 
serve to distinguish phage genomes.[12,23] To assess relation-
ships in tetranucleotide frequencies among known phage 
sequences, we collected 2255 phage genomes from RefSeq 
in October 2015 belonging to various taxonomies and having 
different genome lengths clustered around 40–50 kbp and 
170–180 kbp (Figure S1, Table S1, Supporting Information), 
calculated tetranucleotide frequencies, and visualized phage 
genome relations in two dimensions using t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) (Figure 1a).[24] We then 
clustered phage genomes using DBSCAN,[25] and observed 
enriched taxa within clusters (Figure 1b). 60% of the viral 
genomes are assigned to clusters containing 10 or more 
sequences (Table S2, Supporting Information). All clusters 
containing more than 10 sequences contain almost exclu-
sively viral sequences from a single category under Baltimore 
classification, demonstrating the effectiveness of DBSCAN 
clustering of viral sequences to enrich for sequences of sim-
ilar taxonomy (Figure 1b).

In particular, single stranded RNA (ssRNA) viruses cluster 
into two enriched groups belonging to the genera Allolevirus 
and Levivirus respectively, generally classified as Enterobacterio-
phge MS2 and Enterobacteriophage Qß,[26] Six enriched clusters 
of single stranded DNA (ssDNA) viruses are also identified. 
The largest of these clusters is enriched for the well-character-
ized 5.4 kbp Enterobacteria phage phiX174 sensu lato. The second 

largest of these clusters is enriched for the 5.5 kbp Enterobac-
teria phage G4 sensu lato. There are limited number of double 
stranded RNA (dsRNA) virus sequences in the database we 
used. These viruses are deposited into the same cluster based 
on our algorithm, demonstrating that dsRNA viruses are dis-
tinct from other types of viruses. Finally, most viral clusters are 
enriched for double stranded DNA (dsDNA) viruses, to which 
phage sequences belong. Furthermore, clusters enriched for 
dsDNA viruses represent enriched viral groups at lower tax-
onomies. Examples include Caudovirales (81.0% of cluster), 
Autographivirinae (97.3% of cluster), Cystoviridae (81.0% of 
cluster), and Phieta like virus (65.9% of cluster) (Figure 1a). 
Taken together, we show that tetranucleotide frequency based 
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Figure 1. RefSeq phage tetranucleotide characteristics and taxonomy. a) 
t-SNE representation based on tetranucleotide frequency of 2255 phage 
sequences from RefSeq. Clusters assigned with reduced dimensionality 
(2D) embedded tetramer frequency vectors and clustered using DBSCAN 
(epsilon = 1.5, min points per cluster = 10). Some clusters enriched with 
phage of a single taxon are labeled with percentages denoting the propor-
tion of phage sequences in that cluster belonging to that enriched taxon. 
A cluster is considered enriched with a taxon if the proportion of phage 
sequences belonging to that taxon in the cluster is greater than 50% and 
the enriched abundance is statistically significant compared to back-
ground abundance in the reference dataset, as tested using Pearson’s 
chi-squared test. b) Compositions of taxa for phage sequences assigned 
to the clusters shown in Figure 1a at the Baltimore Classification depth.
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phage taxonomy identification using t-SNE and DBSCAN is an 
effective phage differentiation scheme, generating groups of 
viral genomes enriched for a single taxon.

For comparison purposes, we also used k-means clustering 
on tetranucleotide frequencies to perform similar taxonomic 
classification on reference viral sequences (Figure S2, Sup-
porting Information). Unlike DBSCAN, k-means clustering 
associates every sequence into a cluster based on the number 
of cluster centers provided. Using k = 40 results in less clusters 
but at the cost of some viral clusters becoming less pure. Sim-
ilar to DBSCAN results, most clusters are enriched for dsDNA 
viruses. However, ssRNA and dsRNA virus clusters now con-
tain significant proportion of dsDNA viruses as well (Figure 
S2b, Supporting Information). Although enriched clusters at 
the family level exist, such as Autographivirinae, Caudovirales, 
and Podoviridae, most clusters are no longer enriched for a 
single group, demonstrated by the example where dsDNA Cel-
lulophaga phage phiSM, dsDNA Lactococcus phage 936 sensu lato, 
and Skunalikevirus are classified into the same cluster (Figure 
S2, cluster 10 in Table S3, Supporting Information). However, 
when k is increased to 86, results obtained become similar to 
those obtained using DBSCAN.

2.2. PhaMers Uses Machine-Learning Techniques to Identify 
Phage Sequences from Reference Genomes

In addition to differentiating phage sequences from each other, 
tetranucleotide frequencies can differentiate phage from prokar-
yotic sequences. This feature is useful since the abundance of 
prokaryotic contigs from metagenomic datasets often hampers 
discovery of novel viral genomes. Hence, we sought to under-
stand how tetranucleotide frequencies could best distinguish 
phage sequences from prokaryotic sequences and developed 
a machine-learning algorithm that compares tetranucleotide 
frequencies of unknown sequences to those of known phage, 
bacterial and archaeal sequences (Figure S3, Supporting Infor-
mation). Reference phage genomes from RefSeq (Table S1, Sup-
porting Information) and bacterial and archaeal genomes from 
GenBank (Table S4, Supporting Information) were used. Testing 
a set of machine-learning algorithms and their combinations 
using 20-fold cross validation on reference phage genomes, we 
found that a linear combination of KNN and a cluster centroid 
proximity metric (SI Text, Figure S4, Supporting Information) 
performed best when considering both area under the curve 
(AUC = 0.992) and true positive rate (TP = 91%) (Figure 2a). We 
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Figure 2. N-fold cross validation of PhaMers scoring algorithm. a) Receiver operator characteristic (ROC) curves for various supervised learning 
algorithms used on the reference datasets of phage and bacterial sequences in 20-fold cross validation. “DBSCAN” and “KMEANS” scoring algo-
rithms apply the method described in S1 Text to calculate a metric of proximity to the nearest clusters of phages and bacteria assigned by DBSCAN 
and k-means clustering with k = 86, respectively. “DENSITY” stands for a custom algorithm that uses Kernel Density Estimation to approximate the 
probability density of phage and bacteria data points, and then gives a score as the log-ratio of the two probabilities. “KNN” represents a K-Nearest-
Neighbors algorithm, and “SVM” represents a Support Vector Machine approach. The “COMBO” algorithm is a linear combination of K-Nearest 
Neighbors and “KMEANS” and is described in S1 Text. b) Distributions of PhaMers scores, given by “COMBO”, for 2255 phage and 2255 bacterial 
genomes, as calculated with 20-fold cross validation. The small blue population centered at score = −1 are the phages in the datasets which were 
misclassified as bacteria (false negatives). There is also a smaller population of misclassified bacteria shown at score = 1. c) Predictive performance 
(AUC) of PhaMers as a function of reference genome length. The reference datasets of phage and bacterial genomes were cut randomly to sizes of 
2.5, 5, 7.5, 10, and 100 kbp. Predictive performance, shown on the y-axis, is given by the area beneath the ROC, which drops as sequences were cut to 
lengths shorter than 5 kbp. Dataset of bacteria used for this analysis are included in Table S6, Supporting Information.
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decided to use this combined approach for phage identification 
in PhaMers. The underlying method used by PhaMers to distin-
guish phage sequences from other microbial sequences differs 
from other k-mer based viral identification tools. For example, 
VirFinder uses a logistic regression model to build a binary clas-
sifier. The more recent DeepVirFinder developed by the same 
group uses a convolutional neural network (CNN). Because dif-
ferent machine-learning frameworks can lead to distinct out-
comes, PhaMers offer a novel machine-learning model for phage 
contig identification. In practice, PhaMers scores predict phage 
sequences with positive values and non-phage sequences with 
negative values (Figure 2b). A reasonable cutoff to distinguish 
phage and non-phage sequences is 0, yielding 91.8% sensitivity, 
99.3% specificity, and 99.2% positive predictive value (PPV).

When classifying reference sequences in the test dataset using 
a “leave one out” approach, PhaMers correctly classified phage 
sequences belonging to Enterobacteria phage T4, T4-like and 
T7-like viruses, Propionibacterium phage, and Lactococcus phage 
ASCC. Misclassified phage sequences (negative scores) were 
generally from unclassified Siphoviridae, unclassified Podoviridae, 
and unclassified Myoviridae. Misclassification occurred because 
there were few similar relatives in the dataset. To discount the 
effect of heavily represented phages on performance estimation, 
we performed cross validation with a reduced dataset of phages 
containing only one member from each taxonomy, generating 
342 phage sequences. Tetranucleotide frequencies distinguished 
this set of phage sequences from bacteria with only margin-
ally decreased accuracy (Figure S5, Supporting Information). 
We also assessed how sequence length affected PhaMers’ per-
formance by performing 20-fold cross validation with random 
subset from the test dataset. We observed that the area under 

the curve (AUC) of the receiver operator characteristic (ROC) 
dropped most significantly as sequence length decreased below 
5 kbp (Figure 2c), demonstrating that 5 kbp is a useful contig 
length cutoff. The 5 kbp contig length also limits us to using 
tetranucleotide frequencies because longer k-mers tend to gen-
erate sparse vectors that reduce classification specificity.

2.3. PhaMers Identifies Putative Phage Sequences from 
Yellowstone Hot Springs

We analyzed two sets of assembled metagenomic contigs 
longer than 5 kbp with PhaMers, VirSorter, DeepVirFinder, 
and visualized the resulting viral contigs identified by each tool 
(Figure 3a, Table S5, Supporting Information). These datasets 
were prepared using a microfluidic-based mini-metagenomic 
method on two hot spring samples from Bijah and Mound 
Springs of the Yellowstone National Park (Experimental Sec-
tion).[27] Briefly, microfluidic-based mini-metagenomics is a 
method developed to analyze complex microbial communities 
by dividing each sample into smaller subsamples containing 
5–10 cells each. Whole genome amplification, metagenomic 
sequencing, and de-novo assembly of combined sequencing 
data produce a set of metagenomic contigs, most of which 
belong to microbial genomes.[27,28] In this work, we explore viral 
contigs and their relationships with microbial genomes from 
the same samples. Most contigs in both samples represent 
microbial genome fragments and are not identified as phage-
like by any tool. PhaMers identified 836 of the 5594 contigs 
longer than 5 kbp as potential phage with positive scores. 
Similarly, out of all contigs over 5 kbp, VirSorter identified 23 
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Figure 3. Phage contig identification and taxonomy prediction. a) Venn diagram showing the number of contigs from Mound Spring and Bijah Spring 
classified as phage by PhaMers, VirSorter, and DeepVirFinder. b) Bar graph illustrating either the number (left) or percentage (right) of contigs extracted 
by the respective phage identification method that contain at least one viral gene. The difference between PhaMers and PhaMers Only (or between 
DeepVirFinder and DeepVirFinder Only) is that contigs identified by PhaMers may also be identified by other tools, whereas contigs identified by 
PhaMers Only are not identified by any other tool. c) t-Distributed Stochastic Neighbor Embedding (t-SNE) representation of tetramer frequency vectors 
of reference genomes in conjunction with contigs longer than 5 kbp from the Mound Spring dataset. Contigs that are identified as phage by neither 
PhaMers nor VirSorter represent microbial contigs. Red arrows indicate contigs identified as phages which were assigned a taxonomic classification 
based on their proximity to clusters of phages enriched for a single taxon.
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putative phage contigs from the Bijah Spring sample and 89 
from the Mound Spring sample. Six phage contigs from the 
Mound Spring dataset were identified as potentially prophage. 
DeepVirFinder identified 636 contigs as potentially phage, out 
of which 71 were also identified by VirSorter, and 47 identified 
by all 3 tools (Figure 3a). Of the 112 contigs identified as poten-
tially phage-like by VirSorter, 62 were given positive PhaMers 
scores. Even though PhaMers and DeepVirFinder each identi-
fied a similar number of contigs as phage-like, less than half 
(333) were identified by both tools. This result was surprising 
considering both tools use machine-learning methods and 
tetranucleotide frequency of DNA sequences to predict putative 
phages. We postulate that the difference results from the dis-
tinct algorithms used by machine-learning models underlying 
both phage prediction tools (Experimental Section).

Following phage contig identification we assess whether 
putative phage contigs identified by PhaMers are phage-like. 
Since many putative phage contigs identified by PhaMers 
and DeepVirFinder contain only unannotated open reading 
frames, we tabulated the number of contigs containing 
at least one annotated gene with predicted viral function 
(Figure 3b). Putative phages identified by PhaMers contained 
the highest number of contigs with viral genes (Figure 3b left 
panel), which may not be surprising since PhaMers also iden-
tified the highest number of sequences as phage-like. After 
normalizing by the total number of contigs identified by the 
respective methods, VirSorter results had the highest per-
centage of putative phage contigs with viral genes (Figure 3b 
right panel). However, out of putative phage contigs identified 
by PhaMers or DeepVirFinder only, PhaMers’s predictions 
included 5x the number of contigs with viral genes, demon-
strating that these were likely phage contigs that would not be 
identified via other tools. Taken together, PhaMers identifies 
phage contigs from metagenomic datasets that VirSorter and 
DeepVirFinder miss.

To deepen our analysis of novel phage sequences, we used 
t-SNE to visualize tetranucleotide frequencies of all con-
tigs combined with phage and bacterial reference sequences 
(Figure 3c, Figure S6, Supporting Information). Microbial con-
tigs from Yellowstone metagenomic samples formed tight clus-
ters, indicating that they originate from closely related bacterial 
genomes. We focused on a set of putative phage contigs pre-
dicted by VirSorter and PhaMers that lie in proximity to clus-
ters of known phage genomes (19 contigs from Bijah Spring 
and 83 contigs from Mound Spring).

To predict phage taxonomy from tetranucleotide frequen-
cies, we clustered known phage tetramer frequency vectors 
with those of novel phages. We looked for novel phage contigs 
assigned to clusters enriched with reference phage sequences of 
a single taxon. Clusters were labeled as enriched for a taxon if 
members of that taxon constituted more than half of the cluster 
and their prevalence was significantly greater than the propor-
tion that the taxon was represented in the reference dataset. A 
contig meeting these criteria and lying within a standard devia-
tion of the mean cluster silhouette value was assigned the taxon 
of that cluster. Of the 24 contigs (five from Bijah Spring, 18 from 
Mound Spring, and one from Mammoth Geyser Basin) that 
met these criteria, most were assigned to clusters enriched for 
Siphoviridae, Podoviridae, and Myoviridae (Figure 3c red arrows). 
These three families of dsDNA phages belong to the order 
Caudovirales and are differentiated by their tail morphology. 
Podoviridae have short non-contractile tails while Myoviridae 
and Siphoviridae have long tails, contractile for the former and 
non-contractile for the ladder.[29] A 13504 base pair phage contig 
(Contig 1753) from Mound Spring (category 2 “quite sure” pre-
diction by VirSorter and 1.14 by PhaMers) is similar in tetra-
nucleotide frequency to Siphoviridae and contains many genes 
with viral functions, including phage tail and portal proteins 
typically associated with Siphoviridae (Figure 4a–c). Another 
phage contig (Contig 677) 20664 base pairs in length (category 
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Figure 4. Selected novel phage contigs identified by both PhaMers and VirSorter. a) Diagram of 13.5 kbp contig (Contig 1753) from Mound Spring 
showing putative coding regions identified by VirSorter. b) Bar graph representing the composition of taxa for phages in the cluster to which contig 
1753 was assigned by k-means (k = 86) on the basis of tetranucleotide frequencies. c) Cluster silhouette values for reference phage sequence (blue) 
and contig 1752 (red) assigned by k-means clustering. d) Diagram of contig 677 showing VirSorter annotations.
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2 by VirSorter and 0.97 by PhaMers) contains four viral genes 
but is also enriched (33/36) for genes homologous to the ther-
mophilic bacterium Hydrogenobacter, in the phylum Aquificae 
(Figure 4d). The enrichment for predicted genes homologous 
to Hydrogenobacter is an indication that Hydrogenobacter is a 
natural host. Finally, we characterized a single novel viral contig 
of length 35211 base pairs (Figure S6, Supporting Information). 
This contig was not identified as a phage by VirSorter but was 
given a score of 0.90 by PhaMers. Top hits using NCBI BLAST 
revealed similarities at both nucleotide and protein level to the 
thermophilic archaeal phage genera Sulfobus filamentous and 
Acidianus filamentous, belonging to the Betalipothrixvirus genus 
of the family Lipothrixviridae.[29] This contig was assigned on the 
basis of tetranucleotide frequencies to a cluster enriched with 
Lactococcus phage 936 sensu lato, an unclassified Siphoviridae. Pro-
tein blast revealed a 596 amino acid putative protein with 73% 
identity to a Holiday junction branch migration helicase from 
Acidianus filamentous virus 9, as well as a 563 amino acid puta-
tive protein with 72% identity to a helicase from Acidianus fila-
mentous virus 9. Another 1038 amino acid putative protein had 
48% identity to a conserved hypothetical protein of Acidianus 

filamentous virus 3,[8] not appearing in the Sulfobus filamentous 
genome.[30] These features indicate that, as a new phage in the 
Betalipothrixvirus genus, this contig has shorter phylogenetic 
distance to Acidianus filamentous than to Sulfobus filamentous.

2.4. Co-Occurrence from Mini-Metagenomics Enable Microbial 
Host Predictions

Mini-metagenomics distribute single bacterial cells randomly 
into subsamples containing 5–10 cells each. The occurrence 
of cells across subsamples that belong to a particular bacte-
rial species or phage genome is valuable for binning microbial 
contigs[31] and assigning phage to potential host. To explore 
the ability of assigning putative phage contigs predicted by 
PhaMers, VirSorter, and DeepVirFinder to potential microbial 
host, we focused on 313 phage-like sequences over 10 kbp iden-
tified by one of the three tools from the Mound Spring sample. 
We clustered all contigs over 10 kbp from Mound Spring using 
t-SNE based on the contig’s occurrence patterns across 93 
mini-metagenomic subsamples (Figure 5a). Occurrence patters 
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Figure 5. Assigning phage contigs to microbial host using mini-metagenomic co-occurrence. a) t-SNE plot of all contigs greater than 10 kbps (N = 
1474) from Mound Spring clustered based on presence and absence patterns across 93 mini-metagenomic subsamples. Each green cluster represents 
binned microbial genomes larger than 0.5 Mbp. Pink dots represent phage contigs identified by PhaMers, VirSorter, DeepVirFinder, or a combination 
that are associated to a microbial host based on co-occurrence patterns (p < 0.05 using Fisher’s Exact Test). Orange dots represent phage contigs iden-
tified by the same combination of tools that are either associated with microbial host genomes < 0.5 Mbp or are not associated with a microbial host 
(p > 0.05). b) Contigs (N = 125) in (a) identified as phage sequences that are associated with microbial host genomes > 0.5 Mbp. A brown rectangle 
shows that a contig is identified as phage by the corresponding method labeled to the left of the row. Numbers denote microbial genome clusters 
labeled in (a). Phylogeny of the microbial host is labeled below the graph. c) Contig occurrence patterns across 93 mini-metagenomic subsamples. 
Contig 1753 is plotted with related Clostridia contigs with similar occurrence patterns. Contig 677 is plotted along with a cluster of Hydrogenobacter 
contigs. Brightness represents base 2 logarithm of the contig abundance within each subsample, defined as the number of basepairs covered by at 
least 1 read in that subsample.
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of each putative phage was compared with the occurrence pat-
tern of the microbial genome using Fisher’s exact test if size of 
the microbial genome was larger than 0.5 Mbp and the putative 
phage was clustered with said microbial genome (Experimental 
Section). Those with significant associations (p < 0.05) were 
plotted in pink while others are plotted in orange (Figure 5a). In 
addition, we identified microbial genomes based on gene anno-
tation. Although some phage contigs were identified by both 
tools, majority of the phage contigs were either identified by 
PhaMers only or by DeepVirFinder only. Furthermore, PhaMers 
and DeepVirFinder identified putative phage contigs associated 
with different hosts (Figure 5b). Whereas DeepVirFinder iden-
tified more phage associated with Elusimicrobia, Bacteroidetes, 
and Fervidibacteria, PhaMers identified more archaeal viruses 
and phage associated with Thermotogae, Nitrospirae, Atribac-
teria, and Fervidibacteria. The identification of putative phages 
associated with different phyla of microbial hosts illustrates 
another advantage of developing and using PhaMers, a phage 
identification tool that uses complementary machine-learning 
methods as existing tools.

Based on co-occurrence patterns, some phage associate with 
high confidence (p < 0.05, Fisher’s exact test) to microbial hosts 
whose genome is less complete (<5 Mbp). Two examples are 
contigs represented in Figure 4. Contig 1753 is only present in 
one mini-metagenomic subsample. We observe similar occur-
rence patterns across another set of nine contigs assigned to 
Clostridiales (Figure 5c). None of the other genomes appear only 
in the same mini-metagenomic subsample, suggesting that 
contig 1753 is more likely a Siphoviridae that infects Clostridi-
ales, although we cannot tell if the Siphoviridae fragment is 
inserted into a Clostridiales genome because of its rare occur-
rence. Contig 677 was hypothesized to infect Hydrogenobacter 
based on predicted genes. This hypothesis is validated by the 
similar and abundant occurrence patterns between the phage 
contig and a partial Hydrogenobacter genome from the same 
environment (p < 10−12, Fisher’s exact test) (Figure 5c). While it 
may be possible that an infection is so prevalent that the phage 
is observed to co-occur with its host in a large fraction of hosts, 
it seems more likely that high co-occurrence statistics is a sign 
that the phage is either incorporated into the host’s genome as 
a prophage or exists in the host as a plasmid.

3. Conclusion

The large numbers of recent metagenomic studies have gener-
ated exponentially increasing environmental sequencing data 
representing large prokaryotic and viral diversity. Although 
significant progress has been made in mining prokaryotic 
genomes from metagenomic datasets, finding phage genomes 
is still difficult, partly due to the lack of universal marker 
genes among phage genomes. The tetranucleotide frequency 
and machine-learning aspects of the PhaMers algorithm for 
both phage identification and classification may comple-
ment protein homology-based detection methods and other 
machine-learning based phage identification tools, enabling the 
discovery of broader classes of phage genomes. PhaMers per-
mits phage classification and the identification of potential host 
by assessing proximity of nearby phage or prokaryotic genome 

clusters in the tetranucleotide frequency space. Combined 
with mini-metagenomic co-occurrence patterns, our method 
has the potential to assign putative phage to its microbial host 
and differentiate between a phage infection and bacterial cells 
that carry phage genomes. Although PhaMers’s performance is 
affected by the comprehensiveness of reference datasets, most 
of which are dominated by few, well-characterized phage tax-
onomies, we have taken steps to mitigate such effects by using 
a reduced reference subset during cross validation. As the 
number of metagenomic datasets continues to increase, more 
phage genomes will be discovered, leading to more compre-
hensive reference phage databases. As phage databases grow 
to include more references, the combination of using multiple 
phage detection and classification methods with mini-metagen-
omics will be beneficial in elucidating the global viral diversity.

4. Experimental Section
Sample Collection: Environmental samples used in this study were 

collected from two separate hot springs from Yellowstone National 
Park under permit number YELL-2009-SCI-5788: sediments of the Bijah 
Spring in the Mammoth Norris Corridor and Mound Spring in the Lower 
Geyser Basin region. Samples were placed in 2-mL tubes and soaked in 
50% ethanol onsite. Samples were spaced in 2-mL tubes without any 
filtering and soaked in 50% ethanol onsite. Upon returning, samples 
were transferred to −80 °C for long-term storage. Biosample information 
can be found from Joint Genomes Institute’s GOLD system under 
Gb0114344 and Gb0114821, respectively.

Sample Preparation and Sequencing: Environmental samples were 
processed using the microfluidic-based mini-metagenomic protocol 
performed on a commercially available Fluidigm C1 Auto Prep IFC 
(Integrated Fluidic Circuit).[27] Steps performed on the automated 
microfluidic platform included cell partition, cell lysis, and genomic 
DNA amplification using MDA (Multiple Displacement Amplification). 
Amplified genomic DNA was harvested into a 96-well plate. The 
concentration was quantified independently using the high sensitivity 
large fragment analysis kit (AATI) and adjusted to 0.1–0.3 ng µL−1, 
the input range of the Nextera XT library prep pipeline. Libraries 
were sequenced on the Illumina NextSeq (Illumina) platform using 
a 2 × 150 bp runs. Sequencing reads were filtered and assembled 
according to the methods described by Yu et al.[27] Assembly was 
performed via SPAdes V3.5.0 with k-mer values of 33, 55, 77, and 99. 
Contigs longer than 5 kbp were retained for phage analyses.

PhaMers Classification of Metagenomic Contigs: PhaMers’ scoring 
algorithm was used to score assembled metagenomic contigs greater 
than 5 kbp. PhaMers uses BioPython to parse fasta formatted files 
of assembled contigs, and tabulates tetranucleotide frequencies 
before scoring. Results are written to file and are used for subsequent 
analysis. To assign putative taxonomic classifications to phage, k-means 
(k = 86) was used to cluster the tetranucleotide frequencies of each 
putative phage with those of the phages from the reference data set 
and examined the taxonomic composition of the phage sequences 
in the cluster that the contig was assigned to. A contig assigned to a 
taxonomically enriched cluster was considered if phage from a single 
taxon composed its cluster at a proportion greater than 50%. It was 
considered as evidence of a putative phage’s taxonomic classification if 
a phage was assigned to an enriched cluster and if its cluster silhouette 
score was within one standard deviation of the mean cluster silhouette 
scores of the reference phage in the cluster.

Reference Database Generation: The reference dataset of genomic 
phage sequences was assembled using the Phage available on RefSeq 
in October of 2015. A complete list of all viral accession numbers made 
available on NCBI was downloaded and used to find accession numbers 
for all viruses that infect bacteria or archaea (Table S1, Supporting 
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Information). This set of accession numbers was used to access and 
compile a set of all phage sequences in fasta format, subsequently used 
for tetranucleotide frequency analysis. The reference dataset of bacterial 
genomic sequences was generated from genomic assemblies available 
on GenBank (Table S4, Supporting Information). Bacterial species were 
selected at random from the subdirectories at ftp.ncbi.nlm.nih.gov/
genomes/genbank/bacteria/, and the latest genomic assembly fasta 
files were used for analysis in PhaMers. Tetranucleotide frequencies were 
calculated for all genomic fragments within each contig file, and a list of 
bacterial accession number a tetranucleotide counts.

PhaMers Classification of Known Phage and Bacterial Genomes: To 
verify PhaMers’ predictive discrimination between phage and non-phage 
genomic sequences, a k-mer length of 4 (tetranucleotide) was selected 
and occurrences of each of the 256 tetramers in the 2255 phage and 
2255 bacterial genomes of the reference dataset were counted. We then 
normalized each tetranucleotide count vector by the total number of 
tetramers counted to produce tetranucleotide frequency vectors, thereby 
discrediting differences in vectors due to sequence length. Then, 20-fold 
cross validation was performed on different scoring algorithms, wherein 
both the phage and bacterial datasets were divided into subdivisions 
and each subdivision was scored by using the remaining nineteen 
subdivisions as training data.

The following supervised learning algorithms were tested: Support 
Vector Machine, Kernel Density Estimation, K-Nearest Neighbors (KNN), 
and Nearest Centroid, and linear combinations of results from each 
(Figure 2a). KNN was chosen as the primary classifier because it performed 
with lowest false positive rate while maintaining >90% sensitivity. The 
parameter specifying number of neighbors used in KNN classification (K) 
was varied from 3 to 20 during cross validation on the reference datasets. 
Increasing K yielded marginally decreased performance, hence informing 
our choice of K = 3. To add additional information into the final PhaMers 
score, the initial classification by KNN was taken to be a −1 (non-phage) 
or 1 (phage) and added to it a parameter between −1 and 1 that quantified 
the proximity of a point to phage clusters, and distance away from 
bacterial clusters. (Figure S4, Supporting Information) This was chosen 
because this algorithm performed well on its own, and quantifies relative 
distances to large groups of reference data, whereas KNN classified based 
on more local data points.

To study the relationship between tetranucleotide frequencies and 
phage taxonomy, the dimensionality of this reference phage tetramer 
frequency vectors was reduced from 256 to two using t-SNE (Figure 1a). 
The reduced dimensionality tetramer frequency vectors were then 
clustered using density-based spatial clustering DBSCAN,[25] and the 
prevalence of each taxa in each cluster was quantified.

VirSorter and DeepVirFinder Analysis of Metagenomic Contigs: 
Samples were analyzed using the VirSorter 1.0.3 phage identification 
pipeline available through the iPlant Discovery Environment on the 
iPlant collaborative website, made available by CyVerse. (https://
de.iplantcollaborative.org/de/) VirSorter used all bacterial and archaeal 
virus genomes in Refseq, as of January 2014 for the analysis of both 
metagenomic samples. DeepVirFinder version 1.0 (https://github.com/
jessieren/DeepVirFinder) was used to analyze all mini-metagenomic 
contigs over 5 kbp using default options plus “-l 5000.” Contigs receiving 
a score greater than 0.7 and a p-value less than 0.05 are taken as valid 
viral predictions.

Annotation of Putative Phage Contigs: Contigs were uploaded to JGI’s 
Integrated Microbial Genomes Expert Review online database (IMG/ER). 
Annotation was performed via IMG/ER.[32] Briefly, structural annotations 
were performed to identify CRISPRs (pilercr), tRNA (tRNAscan), and 
rRNA (hmmsearch). Protein coding genes were identified with a four ab 
initio gene prediction tools: GeneMark, Prodigal, MetaGeneAnnotator, 
and FragGeneScan. Functional annotation was achieved by associating 
protein coding genes with COGs, Pfams, KO terms, and EC numbers. 
Phylogenetic lineage was assigned to each contig based on gene 
assignment. Annotations can be found under genome IDs 3300006068 
and 3300006065.

Software Availability: Code and algorithms used by PhaMers were 
tested in MATLAB and implemented in the Python 2.7 programming 

language. Python 2.7 was used to write scripts for parsing of VirSorter, 
DeepVirFinder, and IMG output files and for integration with PhaMers 
data. All PhaMers scripts are available at https://github.com/jondeaton/
PhaMers. The Python library Matplotlib was used for plot generation.

Statistical Analysis: p values were computed using Fisher’s exact test 
to assign a putative phage to its potential microbial host. Based on 
occurrence patterns of both the phage sequence and the associated 
microbial genome across 93 mini-metagenomic subsamples, a 2 × 2 
contingency table is created including the number of subsamples where 
both phage and microbe are present (a), phage is present (b), microbe 
is present (c), and both are absent (d). Fisher’s exact test then uses the 
following equation:
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Associations are deemed valid if p < 0.05.
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Supporting Information is available from the Wiley Online Library or 
from the author.
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